电子交换介导的核自旋可扩展纠缠
近日,澳大利亚新南威尔士大学悉尼分校Andrea Morello团队研究了电子交换介导的核自旋可扩展纠缠。2025年9月18日出版的《科学》杂志发表了这项成果。
核自旋在量子计算中的应用受限于难以在远距离原子核间创建真正的量子纠缠。目前半导体中的核纠缠依赖于原子核与共用电子的耦合,这并非一种可扩展的策略。
在这项工作中,研究组展示了在硅器件中相距20纳米以上的两个磷原子核之间双量子位控制的Z逻辑门运算。每个原子结合独立电子,其交换相互作用介导了原子核的双量子位门。研究组制备并测量了一个核贝尔态,保真度为76+5-5%,共轭度为0.67+0.05-0.05。通过这种方法,未来扩大半导体自旋量子比特的进展可扩展到基于核自旋的量子计算机的开发。
附:英文原文
Title: Scalable entanglement of nuclear spins mediated by electron exchange
Author: Holly G. Stemp, Mark R. van Blankenstein, Serwan Asaad, Mateusz T. Mdzik, Benjamin Joecker, Hannes R. Firgau, Arne Laucht, Fay E. Hudson, Andrew S. Dzurak, Kohei M. Itoh, Alexander M. Jakob, Brett C. Johnson, David N. Jamieson, Andrea Morello
Issue&Volume: 2025-09-18
Abstract: The use of nuclear spins for quantum computation is limited by the difficulty in creating genuine quantum entanglement between distant nuclei. Current demonstrations of nuclear entanglement in semiconductors rely on coupling the nuclei to a common electron, which is not a scalable strategy. In this work, we demonstrated a two-qubit controlled-Z logic operation between the nuclei of two phosphorus atoms in a silicon device, separated by up to 20 nanometers. Each atom binds separate electrons, whose exchange interaction mediates the nuclear two-qubit gate. We prepared and measured a nuclear Bell state with a fidelity of 76+5-5% and a concurrence of 0.67+0.05-0.05. With this method, future progress in scaling up semiconductor spin qubits can be extended to the development of nuclear spin–based quantum computers.
DOI: ady3799
Source: https://www.science.org/doi/10.1126/science.ady3799